Gaussian Processes in Response Surface Modeling
نویسنده
چکیده
Gaussian processes are used as emulators for expensive computer simulations. Recently, Gaussian processes have also been used to model the “error field” or “code discrepancy” between a computer simulation code and experimental data, and the delta term between two levels of computer simulation (multi-fidelity codes). This work presents the use of Gaussian process models to approximate error or delta fields, and examines how one calculates the parameters governing the process. In multi-fidelity modeling, the delta term is used to correct a lower fidelity model to match or approximate a higher fidelity model. The terms governing the Gaussian process (e.g., the parameters of the covariance matrix) are updated using a Bayesian approach. We have found that use of Gaussian process models requires a good understanding of the method itself and an understanding of the problem in enough detail to identify reasonable covariance parameters. The methods are not “black-box” methods that can be used without some statistical understanding. However, Gaussian processes offer the ability to account for uncertainties in prediction. This approach can help reduce the number of high-fidelity function evaluations necessary in multi-fidelity optimization.
منابع مشابه
Experimental Studies, Response Surface Methodology and Molecular Modeling for Optimization and Mechanism Analysis of Methylene Blue Dye Removal by Different Clays
In this work, three types of natural clays including kaolinite, montmorillonite, and illite with different molecular structures, as adsorbents, are selected for the removal of methylene blue dye, and their performance is investigated. Also the optimization and the analysis of the dye adsorption mechanism are performed using the response surface methodology, molecular modeling, and experimental ...
متن کاملChromium removal and water recycling from electroplating wastewater through direct osmosis: Modeling and optimization by response surface methodology
Background: Considering the carcinogenic effects of heavy metals, such as chromium, it is essential to remove these elements from water and wastewater. Direct osmosis is a new membrane technology, which can be a proper alternative to conventional chromium removal processes. Methods: The wastewater samples were collected from an electroplating unit, located in Alborz industrial city, Qazvin, Ir...
متن کاملTemperature in bone drilling process: Mathematical modeling and Optimization of effective parameters (TECHNICAL NOTE)
Bone drilling process is the most prominent process in orthopedically surgeries and curing bone breakages. It is also very common in dentistry and bone sampling operations. Due to complexity of the material that is machined, bone, and the sensitivity of the process, bone drilling is one of the most important, common and sensitive processes in biomedical engineering field. The most critical prob...
متن کاملExperimental design and response surface modeling for optimization of humic substances removal by activated carbon: A kinetic and isotherm study
The presence of humic acid (HA) in water treatment processes is very harmful and the cause of undesirable color, taste, and smell. Drinking water containing high concentrations of humic substances can be the cause of many health problems. Therefore, the removal of these compounds from water resources is a very important topic. In this research, response surface methodology (RSM) has been used t...
متن کاملApplication of Exergy Analysis and Response Surface Methodology (RSM) for Reduction of Exergy Loss in Acetic Acid Production Process
Exergy analysis and response surface methodology (RSM) is applied to reduce the exergy loss and improve energy and exergy efficiency of acetic acid production plant. Exergy analysis is run as a thermodynamic tool to assess exergy loss in reactor and towers of acetic acid production process. The process is simulated in Aspen Plus(v.8.4) simulator and the necessary thermodynamics data for calcula...
متن کامل